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Abstract 

Randomness has been a topic of frequent mathematical and philosophical discussion for ages. 

However, in today’s modern world, randomness has become especially important in numerous fields, 

such as in the natural sciences and engineering.  

In this essay, the effect of the length of the repeated pattern (the string length) on the results of the 

chi-square and runs tests for randomness were  investigated .This research was carried out by testing 

arbitrarily chosen repeating decimals to 1000 decimal places against the results of the randomness 

control, pi. After the repeating decimals were tested, their results were used to construct two 

hypotheses.  

The first hypothesis is that according to the chi-square test, repeating decimals become more random 

with longer string lengths. The results of the investigation from the chi-square test, showed that as the 

string length of a decimal approaches infinity, the chi-square value approaches zero, indicating perfect 

randomness and uniform distribution. On the other hand, the results also showed that a string length 

approaching infinity can cause the chi-square value to show infinity-perfect non-randomness. These 

results could therefore help mathematicians to better understand numbers with infinite string lengths. 

The second hypothesis is that according to the runs test, a repeating decimal with either too short or 

too long a string length is non-random. This hypothesis has been confirmed in the general solution. 

Apart from the hypothesis, it was also discovered that a repeating decimal with string length one, has 

an undefined runs test result. This was therefore acknowledged in the conclusion as one of the 

weaknesses of this test.     

However, despite their weaknesses, each test allows for randomness to be viewed from different 

perspectives and therefore facilitates a better understanding of the characteristics of random 

distributions. 

(285 words) 
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Introduction 

The world is governed by chance. Randomness stalks us every day of our lives. 

—Paul Auster 

 

So much of life, it seems to me, is determined by pure randomness. 

—Sidney Poitier 

 

 In this extended essay, the weaknesses and the effect of string length in repeating decimals on the 

results of the chi-square and runs tests for randomness are investigated. 

 

Random processes, processes seemingly uninfluenced by anything, occur every day. The use of 

random numbers in science, technology, mathematics and engineering is not as new as one may think. 

For ages, man has used randomness to make important decisions. For example, making a decision 

with a coin toss. A few of the biggest areas in which randomness is important are in gaming/lotteries, 

computer science (specifically encryption) and in engineering for simulating real-world phenomena. It 

is therefore, evident that the importance of random numbers extends past academia, into our 

everyday lives. 

 

In order to make these calculations as accurate as possible, the random numbers used in the 

calculations need to be of very high quality. For this, there are random number generators. In fact, 

many can be found online and even programmed in scientific calculators. However, many of these 

‘randomly’ generated numbers are not that ‘random’. Flaws in their generation can be detected by 

randomness tests and test suites. These tests are very important for testing the quality of random 

numbers and therefore, calculations in science, engineering etc. are very dependent on the 

thoroughness of these tests. In this essay, two of the most commonly used tests for randomness will 

be investigated, making the results conclusions of this paper relevant to scientists, mathematicians 

and engineers.  

 

 

 

 

 

http://en.wikipedia.org/wiki/Paul_Auster
http://en.wikipedia.org/wiki/Sidney_Poitier
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Approaching the Problem 

Non-randomness can be detected by theoretical statistical tests such as the chi-square test and the 

runs test. These two tests were chosen based their abilities to detect different types of non-

randomness. This will help to give better coverage, making non-randomness less difficult to identify 

and will also be helpful in deciding which test is best suited for detecting non-randomness in 

repeating decimals. 

In order to observe patterns and quantitatively investigate the apparent difference in randomness of 

different repeating decimals, the tests will be carried out on the same list of decimals and also to 

make the number of digits tested constant. This will help me to make fairer comparisons with the 

results. The irrational number, pi to 1000 decimal places, will be used as a control or standard for 

randomness.  

The repeating decimals which will be investigated have been chosen based on their variations in the 

length of their repeated pattern (which in this essay will be called a ‘string’). For example, the 

repeating decimal 0.3333 has a string length of 1, while 0.141414 has a string length of 2. Also, for 

the sake of simplification, only digits after the decimal point will be considered in the tests for 

randomness.  

Repeating Decimals to be Tested: A string is the repeated pattern in the decimal. The string length is 

therefore, the length of the repeated pattern. The decimals which will be tested (see table below) 

have been arbitrarily chosen and will all be tested to 10000 digits after the decimal point, so that 

they may be comparable to the control results of π to 1000 decimal places.  

Repeating Decimal String Length 

0. 3̅ 1 

0. 12̅̅̅̅  2 

0. 456̅̅ ̅̅ ̅ 3 

0. 6789̅̅ ̅̅ ̅̅ ̅ 4 

0. 87654̅̅ ̅̅ ̅̅ ̅̅ ̅ 5 

0. 765432̅̅ ̅̅ ̅̅ ̅̅ ̅̅  6 

0. 0123456̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  7 

0. 01234567̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  8 

0. 012345678̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 9 

0. 0123456789̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 10 

Π ∞ 
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Test One: The Chi-Square Test 

The chi-square test aims to detect non-randomness by estimating how closely an observed 

distribution matches an expected distribution.  

The null hypothesis, H0: There is no difference between the observed frequency (O) and the 

expected   frequency (E) 

The alternate hypothesis, H1: There is a difference between the observed frequency (O) and the 

expected frequency (E).  

The level of significance, α, determines the sensitivity of the test. For this essay the level of 

significance, α, will be equal to 0.05. This choice was made arbitrarily, although it also one of the 

most commonly used values of α. A 0.05 level of significance means that the null hypothesis is 

rejected 5% percent of the time when it is actually true.  

The degree of freedom is the number of outcomes that are free to vary. For example, if a person has 

gets a result of two heads and a tail in three coin tosses, then the result of the first toss could be a 

head, the second-a tail and then the third would then have to be a head. Only two of the tosses are 

open to variation, while the third is dependent on the previous results. There are 2 degrees of 

freedom in the triple coin toss and the same logic follows in this example. The degree of freedom is 

equal to the number of possible outcomes minus one. Therefore, the degree of freedom in this 

example is equal to 10 − 1 = 9.  

Since, the chi-square test is based on the concept of randomness being associated with uniformed 

distribution, the expected number of each digit, 0 to 9, is equal to the number of digits, 1000, 

divided by the number of possible outcomes, 10. That is 
1000

10
= 100.   

The observed number of each digit is simply the number of times digit is found in the decimal tested. 

In the first decimal, 0. 3̅ to 1000 decimal places, the observed number of threes is 1000.  

The deviation is how far the observed values are from the expected values. That is therefore equal 

to the expected value of each digit subtracted from the observed value of the respective digit. For 

the digit 3, the deviation is equal to 1000 − 100 = 900. For all the other digits (1, 2,4,5,6,7,8,9, 0), 

the deviation is equal to -100.  

Although the calculations for the deviations are accurate, the sum of deviations may not give a clear 

picture of how close or far the decimal is from having a uniform distribution of digits. This is because 

if a negative deviance is added to a positive deviance, then the sum of the deviances will be less than 
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the actual deviance of the decimal from uniform distribution. In order to address this problem, the 

deviance can be squared in order for all the measures of deviances to be positive. The deviances 

squared can then be summed, to get a quantitative measure of how much the decimal deviated.  

However, in order to fairly measure how much it deviated, the sum of the deviances squared needs 

to be compared to the sum of expected values. This can be done by dividing this sum of deviations 

by the sum of the expected values.  

In following this reasoning, the formula for the chi-square value is:  𝜒2 = ∑
(𝑂−𝐸)2

𝐸
. For the decimal 

0. 3̅, 𝜒2 = 9 ∙ 100 + 8100 = 9000.   

Using a chi-square reference table, the critical value of 𝜒2 can be found with the level of significance, 

0.05 and the degree of freedom, 9. According to following reference table, the critical value is equal 

to 16.919.  

 

 

 

 

 

1 

 

 

 

 

 

 

 

 

                                                           
1 Taken form Palomar College, 
https://www2.palomar.edu/users/rmorrissette/Lectures/Stats/ChiSquare/TableX.jpg 
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The calculations for the chi-square value of 0. 3̅ to 1000 decimal places, are tabulated below. 

Digits 0 1 2 3 4 5 6 7 8 9 

Expected 

Frequency

, 𝐸 100 100 100 100 100 100 100 100 100 100 

Observed 

Frequency

, 𝑂 0 0 0 1000 0 0 0 0 0 0 

Deviation 

(O − E) -100 -100 -100 900 -100 -100 -100 -100 -100 -100 

Deviation 

Squared        

(O − E)2 10000 10000 10000 810000 10000 10000 10000 10000 10000 10000 

Deviation 

Squared 

divided by 

the 

Expected  

Frequency 

(O−E)2

E
 

100 100 100 8100 100 100 100 100 100 100 

 

The probability, 𝑝, of obtaining the observed sample results when the null hypothesis is actually true 

can be calculated using an excel chi-square function.  

𝑝 0 

Reject H0 Hypothesis Yes 

If  the 𝜒2 > 𝐶𝑉 and  𝑝 < 𝛼 , then the null hypothesis can be rejected. In this example, 9000 is 

greater than the critical value, 16.919 and the probability, 0, is less than the level of significance, 

0.05. These results reject the null hypothesis and it can therefore be interpreted that according to 

the chi-square test, decimal 0. 3̅, is not random.  

(See appendix one for calculation tables for other repeating decimals of varying string lengths.) 

 



  Candidate Number: 000512 -0082  

8 
 

Constructing Hypothesis for the Chi-Square Test 

Table Showing the Results of the Chi-Square Test 

Decimal String Length, 𝑛 H0 𝑝 Value 

0. 3̅ 1   0 

0. 12̅̅̅̅  2   0 

0. 456̅̅ ̅̅ ̅ 3   0 

0. 6789̅̅ ̅̅ ̅̅ ̅ 4   0 

0. 87654̅̅ ̅̅ ̅̅ ̅̅ ̅ 5   1.724110-209 

0. 765432̅̅ ̅̅ ̅̅ ̅̅ ̅̅  6   1.003 10-137 

0. 0123456̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  7   1.08397 10-86 

0. 01234567̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  8   9.9761510-49 

0. 012345678̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 9   8.6964410-20 

0. 0123456789̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 10   1 

Control: Π ∞   0.853049013 

Key:  

 Means that the null hypothesis was rejected. 

 Means that the null hypothesis was accepted. 

 

𝜒2. Hypothesis 

It can be observed that as the string length increases, the probability of the decimal being random 

increases. However, the control variable, π, which should represent show represent a number which 

has passed the chi-square test for randomness, has a surprisingly lower probability of being random 

than the repeating decimal, 0. 0123456789̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅’s probability. This could be attributed to the fact that 

the value of pi which was tested is only a decimal rational approximate of the true value of pi. 

Therefore, not all the digits of pi are represented in the pi decimal tested, whereas all of the digits in 

a string are present in the repeating decimal 0. 0123456789̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. However, the jump from  

8.6964410-20 to 1, is quite big and therefore, 0. 0123456789̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, could be a special case for the 

chi-square test. 
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Apart from this anomaly with the control, π, in general, it can be observed that the 𝑝 value increases 

with an increase in the string length, 𝑛.  It can therefore, be hypothesized that, according to the chi-

square test, as the string length increases, the decimal becomes more random.  
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General Solution One- For the Chi Square Test Hypothesis 

Let 𝑁 be the number of digits tested in the repeating decimal. 

Let 𝑛  be the number of digits in a string.  

Let 𝑐𝑖 be how many of each respective digit in the in a string. For example, in the repeating decimal, 

0. 456̅̅ ̅̅ ̅, 𝑐0 = 0, 𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0, 𝑐4 = 1, 𝑐5 = 1, 𝑐6 = 1, 𝑐7 = 0, 𝑐8 = 0, and  𝑐9 = 0 

Recall  2𝜒2 =
(𝑂−𝐸)2

𝐸
 

The expected number of each digit is equal to the number of digits tested divided by the number of 

possible digits or outcomes (0 to 9). 𝐸 =
𝑁

10
 

The observed number of each digit is equal to the number of times each digit appears in a string 

multiplied by the number of string repeats.  𝑂 =  
𝑐𝑖𝑁

𝑛
 , ∈  𝕫+ 

Therefore, 𝜒2 =  
(

𝑐0𝑁
𝑛⁄ −𝑁

10⁄ )
2

+ (
𝑐1𝑁

𝑛⁄ −𝑁
10⁄ )

2
+(

𝑐2𝑁
𝑛⁄ −𝑁

10⁄ )
2

+⋯(
𝑐9𝑁

𝑛⁄ −𝑁
10⁄ )

2

𝑁
10⁄

=
10 ∑ (

𝑐𝑖𝑁
𝑛⁄ −𝑁

10⁄ )
2

9
𝑖=0

𝑁
        

(
𝑐𝑖𝑁

𝑛
−

𝑁

10
)

2
=

𝑐0 
2 𝑁2

𝑛2 −  
2𝑐0 

2 𝑁2

10𝑛
+  

𝑁2

100
  

Since there are ten digits for which this expansion will be done, there will be ten of each term from 

the above expansion. 

This will give ten of the first term:   
𝑁2

𝑛2  ∙ ∑ 𝑐𝑖
29

𝑖=0  ,  

Ten of the second term: 
−2𝑁2

10𝑛
 ∙ (∑ 𝑐𝑖

9
𝑖=0 ). Since the digits make up a string, then it can be deduced 

that the sum of the number of each digit in the string is equal to the length of the string.  

 ∑ 𝑐𝑖
9
𝑖=0 = 𝑐0 + 𝑐1 + 𝑐2 + ⋯ 𝑐9 = 𝑛. Therefore, ten of the second term is 

−2𝑁2

10𝑛
∙ 𝑛 =  

−2𝑁2

10
 

And ten of the last term: 
𝑁2

100
 ∙ 10 =  

𝑁2

10
  

Therefore, 𝜒2 =   
𝑁2

𝑛2  ∑ 𝑐𝑖
29

𝑖=0 −
2𝑁2

10
+

𝑁2

10
𝑁

10

 =  
10𝑁2  ∑ 𝑐𝑖

29
𝑖=0

𝑁𝑛2  −
10𝑁2

10𝑁
 

𝜒2 =  
10𝑁 ∑ 𝑐𝑖

29
𝑖=0

𝑛2
 − 𝑁 

                                                           
2 Taken from http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm 
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In order for the 𝑝 value to be as high as possible (greater than the 0.05 level of significance), the 𝜒2  

value needs to be at a minimum. To get 𝜒2 at a minimum, the denominator has be at a maximum. 

Since the denominator is 𝑛, the string length, it could be deduced that as the string length increases, 

so does the apparent randomness of the repeating decimal. 

However, a new problem then arises. In order for 𝑛 to increase, either 𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8, 

or 𝑐9 increases or any combination of the terms increases. An increase in any of the 𝑐𝑖 values, also 

implies that there will an increase in the value of ∑ 𝑐𝑖
29

𝑖=0 , and therefore an increase in the numerator, 

counteracting the minimizing effect of increasing the denominator.  

With both the numerator and the denominator increasing with a longer string length, the 𝜒2 value, 

then becomes dependent on which of the two (numerator or denominator) increases at a faster rate. 

It is however, very difficult to tell which increases faster from the information given in the deduced 

value of 𝜒2.  

In order eliminate one of the unknowns in the formula,  𝑛 will be written in terms of 𝑐𝑖.   

𝑛 = ∑ 𝑐1
9
𝑖=0 , and hence 

𝑛2 = ∑ 𝑐𝑖
29

𝑖=0 + 𝑐0 ∑ 𝑐𝑖
9
𝑖=1 + 𝑐1(𝑐0 + ∑ 𝑐𝑖

9
𝑖=2 ) + 𝑐2(∑ 𝑐𝑖

1
𝑖=1 + ∑ 𝑐𝑖

9
𝑖=3 ) + 𝑐3(∑ 𝑐𝑖

2
𝑖=1 + ∑ 𝑐𝑖

9
𝑖=4 ) +

𝑐4(∑ 𝑐𝑖
3
𝑖=1 + ∑ 𝑐𝑖

9
𝑖=5 ) + 𝑐5(∑ 𝑐𝑖

4
𝑖=1 + ∑ 𝑐𝑖

9
𝑖=6 ) + 𝑐6(∑ 𝑐𝑖

5
𝑖=1 + ∑ 𝑐𝑖

9
𝑖=7 ) + 𝑐7(∑ 𝑐𝑖

6
𝑖=1 + ∑ 𝑐𝑖

9
𝑖=8 ) +

𝑐8(∑ 𝑐𝑖
9
𝑖=0 + 𝑐9) + 𝑐9 ∑ 𝑐𝑖

8
𝑖=0  .  

Therefore, 𝑛2 > ∑ 𝑐𝑖
29

𝑖=0 .  

Although, this implies that the denominator increases faster than the numerator, the coefficients of 

∑ 𝑐𝑖
29

𝑖=0 , in the numerator also have to be considered. In order to more concretely prove or disprove 

the hypothesis, the limit of 𝜒2, as 𝑛 → ∞, can be evaluated. 

Since 𝑛 = ∑ 𝑐𝑖
8
𝑖=0 , when 𝑛 → ∞, either 𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8, or 𝑐9 approaches infinity or 

any combination of the terms are approaching infinity. 

 

 

 

 

 

 



  Candidate Number: 000512 -0082  

12 
 

CASE #1: 

In this case, only one of the terms, for example 𝑐0, approaches infinity while the other terms remain 

fixed. The limit of  𝜒2 can be found by lim
𝑐0→∞

10𝑁 ∑ 𝑐𝑖
29

𝑖=0

(∑ 𝑐1
9
𝑖=0 )2 − 𝑁  

When 𝜒2 is multiplied by 
1

𝑐0
2⁄

1
𝑐0

2⁄
,  lim

𝑐0→∞

10𝑁 ∑ 𝑐𝑖
29

𝑖=0
𝑐0

2⁄

(∑ 𝑐𝑖
9
𝑖=0 )2

𝑐0
2⁄

− 𝑁 = lim
𝑐0→∞

10𝑁 ∑ 𝑐𝑖
29

𝑖=0
𝑐0

2⁄

(∑ 𝑐𝑖
9
𝑖=0 )2

𝑐0
2⁄

− 𝑁. 

Evaluate lim
𝑐0→∞

∑ 𝑐𝑖
29

𝑖=0
𝑐0

2⁄

(∑ 𝑐𝑖
9
𝑖=0 )2

𝑐0
2⁄
.  

The numerator will be equal to: 

 (𝑐0
2

𝑐0
2⁄ ) + (

𝑐1
2

𝑐0
2⁄ ) + (

𝑐2
2

𝑐0
2⁄ ) + (

𝑐3
2

𝑐0
2⁄ ) + (

𝑐4
2

𝑐0
2⁄ ) + (

𝑐5
2

𝑐0
2⁄ ) + (

𝑐6
2

𝑐0
2⁄ ) + (

𝑐7
2

𝑐0
2⁄ ) + (

𝑐8
2

𝑐0
2⁄ ) +

(
𝑐9

2

𝑐0
2⁄ )  

 

Since 𝑐0∞, while 𝑐1 through to 𝑐9 remain fixed, the value of, for example 
𝑐1

2

𝑐0
2⁄  will converge to 

zero. This makes the numerator equal to 1+0+0+0+0+0+0+0+0+0=1 

The denominator will be equal to 
∑ 𝑐𝑖

29
𝑖=0

𝑐0
2⁄ +

𝑐0 ∑ 𝑐𝑖
9
𝑖=1 + ⋯ 𝑐9 ∑ 𝑐𝑖

8
𝑖=0

𝑐0
2⁄  . That is  

1 +  
𝑐0 ∑ 𝑐𝑖

9
𝑖=1 + ⋯ 𝑐9 ∑ 𝑐𝑖

8
𝑖=0

𝑐0
2⁄   

 
𝑐0 ∑ 𝑐𝑖

9
𝑖=1

𝑐0
2⁄ =

∑ 𝑐𝑖
9
𝑖=1

𝑐0
⁄  

Since𝑐1 through to 𝑐9 are fixed, then their sum is fixed and lim
𝑐0→∞

∑ 𝑐𝑖
9
𝑖=1

𝑐0
⁄ = 0 

This can be applied to remaining parts of the denominator to give a denominator that is equal to  

1+0+0+0+0+0+0+0+0+0+0=1 

Therefore, as 𝑐0 → ∞, 𝜒2 = 10𝑁 ∙ 1 − 𝑁 = 10𝑁 − 𝑁 = 9𝑁. Since 𝑛 = ∑ 𝑐𝑖
9
𝑖=0 , as 𝑐0 → ∞, 𝑛 → ∞ 

and since 𝑁 = 𝑛𝑘 where 𝑘 ∈ 𝕫+ and where 𝑘 > 1, N also approaches infinity, 𝑁 → ∞. Therefore, 

9𝑁 → ∞. 
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This result is consistent with the theory of the chi-square test. If the number of only one of the digits 

approaches infinity then there will be bias towards that digit and the absolute value of the deviation 

of expected from observed frequency will be greater, and therefore, also approach infinity. 

CASE#2 

In this case a combination of 𝑐𝑖 terms (excluding the combination which includes all of them) 

independently approaching infinity causes the string length, 𝑛, to approach infinity. Finding the exact 

limit of this will be very difficult. However, the result will be similar to that of CASE#1. In the case 

where some terms approach infinity while others do not, the value of chi-square is most likely cause 

the rejection of the null hypothesis. This is because the having some terms go to infinity will cause 

the data to have greater densities of certain digits and smaller densities of others. This will therefore 

cause the distribution of the data to not be uniform and in turn will most likely lead to the null 

hypothesis being rejected. Although, it is not impossible for the null hypothesis to be accepted in 

this case, it is highly unlikely. 

CASE#3 

In this case all of the 𝑐𝑖 terms approach infinity. This can happen in two ways. 

The first way is when the 𝑐𝑖 terms approach infinity at the same rates, so that all 𝑐𝑖 terms 

simultaneously ‘meet’ at infinity. In order for two lines to ‘meet’ at infinity they need to be either 

parallel or collinear. This is illustrated in the graph. 

 

  

 

 

 

 

 

 

Since all the 𝑐𝑖 terms approach infinity at the same rate, then the value of 𝑐0 as 𝑐0 → ∞, is equal to 

the value of all the other 𝑐𝑖 terms as they also approach infinity. With this information limit can be 

evaluated. 

∞ 

Rate at which all 𝑐𝑖 terms approach infinity 

time 

𝑐𝑖 
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 lim
𝑐𝑖→∞

10𝑁 ∑ 𝑐𝑖
29

𝑖=0
𝑐0

2⁄

(∑ 𝑐𝑖
9
𝑖=0 )2

𝑐0
2⁄

− 𝑁 

Finding the limit of 

∑ 𝑐𝑖
29

𝑖=0
𝑐0

2⁄

(∑ 𝑐𝑖
9
𝑖=0 )2

𝑐0
2⁄
:  

 Numerator: Since 𝑐0 = 𝑐1, 
𝑐1

2

𝑐0
2⁄ = 1. Therefore, lim

𝑐0→∞

∑ 𝑐𝑖
29

𝑖=0
𝑐0

2⁄ = 10 

 Denominator: 

 lim
𝑐0→∞

∑ 𝑐𝑖
29

𝑖=0
𝑐0

2⁄ +
𝑐0 ∑ 𝑐𝑖

9
𝑖=1 + ⋯ 𝑐9 ∑ 𝑐𝑖

8
𝑖=0

𝑐0
2⁄ = 10 +

lim
𝑐0→∞

𝑐0 ∑ 𝑐𝑖
9
𝑖=1 + ⋯ 𝑐9 ∑ 𝑐𝑖

8
𝑖=0

𝑐0
2⁄  

For 
𝑐0 ∑ 𝑐𝑖

9
𝑖=1

𝑐0
2⁄ =

𝑐0(𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 + 𝑐5 + 𝑐6 + 𝑐7 + 𝑐8 + 𝑐9)
𝑐0

2⁄ = 9. This then 

repeats 10 times, making the limit of the denominator equal to 10 + 9 ∙ 10 = 100 

The limit of 𝜒2 for the first way of CASE#3, is therefore equal to 
10𝑁×10

100
− 𝑁 = 𝑁 − 𝑁 = 0. 

lim
𝑐𝑖→∞

10𝑁 ∑ 𝑐𝑖
29

𝑖=0
𝑐0

2⁄

(∑ 𝑐𝑖
9
𝑖=0 )2

𝑐0
2⁄

− 𝑁 = 0.  

This explains why 0. 0123456789̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ has a calculated 𝜒2 value of zero.  

The second way in which all 𝑐𝑖 terms can approach infinity, is if they all approach infinity but at 

different rates. It may or may not be possible to evaluate the limit of this 𝜒2 as 𝑛 → ∞.  
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Chi-Square Test Conclusion 

Hypothesis one states that according to the chi-square test, as the string length increases, the 

decimal becomes more random. According to the reasoning and calculations made in the general 

solution, this hypothesis can be partially confirmed and partially disproved. The hypothesis is false 

when string length increases due to an increase in the number of a specific digit. This would cause a 

reveal a bias toward that digit, and the decimal would therefore not have a uniform distribution 

among its digits. An example of this can be found in the repeating decimal, 

0. 12345678000000000000000000000009̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Although the string length in this decimal is long, it 

would be deemed non-random by the chi-square test.  

Similarly, if a combination of digits (excluding a combination of all the digits) increases then there 

would be biases towards these digits and the decimal would therefore, most likely, not have a 

uniform distribution of digits. This can be seen in the repeating decimal, 

0. 123333333344444444444567̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Therefore, although the string is long, the 𝜒2 can still be high. 

On the other hand, in the case where all digits approach infinity at the same rate, the 𝜒2 value 

approaches zero. A 𝜒2 of zero, indicates perfect randomness. An example of this is seen in test 

results of the repeating decimal 0. 0123456789̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

Further Investigation: 

Finding the limits to CASE#2 (a combination of 𝑐𝑖 terms approach infinity) and CASE#3-part 2 (all 𝑐𝑖 

terms approach infinity but at different rates), would be extremely helpful in gaining a better 

understanding of how the chi-square test operates. It would also be interesting to link this data from 

rational repeating decimals to understanding irrational numbers. Irrational numbers are 

unpredictable and have no repeating patterns. They could therefore, be defined as numbers with 

infinite string length. Having a complete understanding of the effect of 𝑛 approaching infinity on the 

value of the chi-square, would therefore, help mathematicians to better understand the distribution 

(uniform nor not uniform) of the digits of irrational numbers.   
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Test Two: Test for Runs Above and Below Mean: 

The runs test is a statistical test which detects non-randomness based on binomial distribution.  

The threshold value is an arbitrarily chosen reference value. The threshold which will be used in 

these calculations is the mean.  

According the runs test, in a random data set, the probability that a value is greater than or less than 

the threshold value, follows a binomial distribution.  

If a digit is greater than the threshold, then it is assigned the label ‘1’. On the other hand, if a digit is 

less than or equal to the threshold then it is assigned the label, ‘2’. 

A run is series of increasing or decreasing values. It can also be defined as a series of successive 

zeroes or ones. For example, in the binary representation, 00 11 0 1 0000 1 00 1111 00, there are 9 

observed runs.  

The level of significance, α, of 0.05, will be used in these calculations. 

The null hypothesis, H0 states that the sequence was produced in a random manner. 

The alternate hypothesis, H1 states that the sequence was not produced in a random manner.  

The null hypothesis is rejected if the number of runs is two few and also if the number of runs is too 

many. For example, in sequence 1, 0000011111, there are two few runs, and as a result the null 

hypothesis is rejected. Another example can be found in sequence 2, 1010101010. In this data set, 

the number of runs is too many and therefore, the null hypothesis is rejected.  

The conditions for the rejection of the null hypothesis are:  

 Test statistic ≤ lower critical value 

 Test statistic ≥ upper critical value 
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The critical values for large data sets can be found using a normal distribution curve.  

3  

The level of significance, α, is on the 𝑦 axis. The critical values which correspond to 0.05 are ±1.96 

𝑁0 is the number of zeroes, 𝑁1 is the number of ones, and N is the total number of digits. 

The expected number of runs, 4E(R) = 1 +
2𝑁0𝑁1

𝑁
= 1 +

2𝑁0𝑁1

𝑁1+𝑁0
. This gives a number of runs which is 

near half the number of digits, while considering the number of ones and zeroes available to form 

runs.  

The variance of the data is a measure of how far each value within a data set is from the mean. It is 

equal to  5 
2𝑁1𝑁0(2𝑁1𝑁0−𝑁) 

𝑁2(𝑁−1)
.  

The standard deviation is equal to the square root of the variance.  

The test statistic, 𝑍 can be calculated by comparing the deviation between the number of observed 

runs and the expected number of runs, with the standard deviation of the series of binary labels. 

That is, the test statistic,6 𝑍 =
𝑅−𝐸(𝑅)

𝑠𝑅
. 

A sample calculation can be performed with the repeating decimal 0. 12̅̅̅̅  to 1000 decimal places. 

The values of 𝑁0, 𝑁1, and 𝑅, are substituted into the equations to give te following tabulated results.  

 

 

 

 

                                                           
3 Taken from http://msor.rsscse.org.uk/leaflets/ssim/SDandCI.php 
4 Taken from http://www.itl.nist.gov/div898/handbook/eda/section3/eda35d.htm 
5 Taken from http://www.itl.nist.gov/div898/handbook/eda/section3/eda35d.htm 
6 Taken fromhttp://www.itl.nist.gov/div898/handbook/eda/section3/eda35d.htm 
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Sample Calculations for 0. 12̅̅̅̅ : 

Mean 1.5 

𝑅 (Number of observed runs) 1000 

𝑁0 (Number of 0s) 500 

𝑁1 (Number of 1s) 500 

𝑁 (Number of digits) 1000 

𝐸(𝑅) 501.000 

𝑉𝑎𝑟(𝑅) 249.750 

𝑆𝑡. 𝐷𝑒𝑣(𝑅) 15.803 

𝑍 31.575 

 

Since, 𝑍 > 1.96, the null hypothesis is rejected and the repeating decimal is therefore, non-random.   

(See appendix two for calculation tables for other repeating decimals of varying string lengths) 
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Constructing a Hypothesis for the Runs Test 

Table Showing the Results of the Chi-Square Test 

Decimal String Length, 𝑛 H0 𝑍 

0. 3̅ 1 𝑍 undefined Undefined 

0. 12̅̅̅̅  2   31.575 

0. 456̅̅ ̅̅ ̅ 3   15.727 

0. 6789̅̅ ̅̅ ̅̅ ̅ 4   -0.063 

0. 87654̅̅ ̅̅ ̅̅ ̅̅ ̅ 5   1.252 

0. 765432̅̅ ̅̅ ̅̅ ̅̅ ̅̅  6   -10.567 

0. 0123456̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  7   -13.234 

0. 01234567̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  8   -15.883 

0. 012345678̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 9   --17.355 

0. 0123456789̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 10   -19.046 

Control: Π ∞   1.211 

Key:  

 Means that the null hypothesis was rejected. 

 Means that the null hypothesis was accepted. 

Hypothesis Two:  

As seen in the results above, it seems as though a decimal is deemed non-random if the string is too 

long, as well as if the string is too short. This can be seen specifically where the string length 

increases from 2 to 3 after which the null hypothesis is accepted. It can also be seen where the string 

length increases from 4 to 5 and the null hypothesis goes from being accepted, to being rejected. It 

can therefore be hypothesized that according to the runs test, a number is non-random whenever 

the string is too short or too long. However, the contrary is true for the irrational number, pi. It 

seems as though, although its string length is very long, that it is still random. However, this is the 

only piece of data which is not congruent with the others, so the stated hypothesis will be 

maintained.  
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General Solution Two- For the Runs Test Hypothesis 

Let 𝑎 be the number of 1s in the binary representation of the string and let 𝑏 be the number of 0s in 

the binary representation of the string. 

Let 𝑁 be the total number of digits in the binary representation. 

The total number of 1s in the decimal, 𝑁1 =
𝑛1𝑁

𝑛
 ……. Equation1 

The total number of 0s in a decimal, 𝑁0 =
𝑛0𝑁

𝑛
………..Equation 2 

The expected number of runs, 𝐸(𝑅) =
2𝑁1𝑁0

𝑁
+ 1 

Substitute equations 1 and 2 in the above equation to get: 

𝐸(𝑅) =
2𝑛1𝑛0𝑁 + 𝑛2

𝑛2
 

The variance, Var =  
2AB(2AB−N)

𝑁2(𝑁−1)
 . Substitute of equations 1 and 2 in this equation to get: 

𝑉𝑎𝑟 =
2𝑛0𝑛1𝑁3(2𝑛0𝑛1𝑁 − 𝑛2)

𝑛4𝑁2(𝑁 − 1)
 

The standard deviation is the square root of the variance = √
2𝑛0𝑛1𝑁3(2𝑛0𝑛1𝑁−𝑛2)

𝑛4𝑁2(𝑁−1)
 

𝑆𝑡. 𝐷𝑒𝑣. =
1

𝑛2𝑁
∙  √

2𝑛0𝑛1𝑁3(2𝑛0𝑛1𝑁 − 𝑛2)

(𝑁 − 1)
 

The general solution to the total number of runs in any decimal, can be written for 2 different cases.. 

In CASE#1: The binary representation of the string ends and starts in the same label-‘1’ or ‘0’.  

Let the number of runs in a string be 𝑟. If the string starts and ends in the same level (0 or 1), then a 

new string will start where the last one ended, which is at the same label. This means that the run at 

the end of a string will continue into the beginning of a new string, rather than having a new run at 

the beginning of the new string. For example,  

Let’s say that there is the binary string, 01010. This string has 5 runs. When a new string starts the 

result is: 0101001010. However, where the two strings meet, the number of runs is the same.  This 

means that for CASE#1, every new string, will mean one less run than expected. Subtract all of these 

ones to get: 
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    𝑟 ∙
𝑁

𝑛
− (

𝑁

𝑛
− 1) total number of runs. When simplified: 

𝐶𝐴𝑆𝐸#1: 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠, 𝑅 =
𝑁(𝑟 − 1)

𝑛
+ 1 

The test statistic, 𝑍 =
𝑅−𝐸(𝑅)

𝑆𝑡.  𝐷𝑒𝑣
   

𝐶𝐴𝑆𝐸#1: 𝑇𝐸𝑆𝑇 𝑆𝑇𝐴𝑇𝐼𝑆𝑇𝐼𝐶, 𝑍 =
𝑁2√𝑁 − 1 ∙ [𝑁𝑛(𝑟 − 1) − 2𝑛0𝑛1]

√2𝑛0𝑛1𝑁3(2𝑛0𝑛1𝑁 − 𝑛2)
 

According to the deduced formula for the test statistic of CASE#1, as 𝑛2 increases, the dominator 

should decrease and the value of the test statistic should increase. However because 𝑛 = 𝑎 + 𝑏, it 

must also be considered that as 𝑛 increases, the value 𝑎𝑏 also increases.   

At the minimum value, 𝑛1 = 1, 𝑛0 = 1, 𝑟 = 2   

𝑍 =
𝑁2√𝑁 − 1 ∙ [𝑁𝑛(𝑟 − 1) − 2𝑛0𝑛1]

√2𝑛0𝑛1𝑁3(2𝑛0𝑛1𝑁 − 𝑛2)
=

𝑁2√𝑁 − 1 ∙ [2𝑁 − 2]

√2𝑁3(2𝑁 − 4)
=

𝑁(𝑁 − 1)3

𝑁 − 2
 

𝑁(𝑁 − 1)3 > 𝑁 − 2.Therefore, at shorter string lengths, the CASE#1 test statistic, is relatively high. 

For a longer string length, where 𝑎 = 5, 𝑏 = 5, 𝑟 = 2, 

𝑧 =
𝑁2√𝑁−1 ∙[10𝑁−50]

√50𝑁3(50𝑁−100)
. Considering that 𝑁 is a fairly high value (since  tests are being done on repeating 

decimals),  the value of the CASE#1 test statistic is still relatively high, even with a longer string length,  

 

In CASE#2:  The first string starts and ends in different binary digits. 

In this case, the total number of runs will be the number of times the string is repeated, 
𝑁

𝑛
, multiplied 

by the number of runs per string, r. 

𝐶𝐴𝑆𝐸#2: 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠, 𝑅 =
𝑟𝑁

𝑛
 

 

𝐶𝐴𝑆𝐸#2: 𝑇𝐸𝑆𝑇 𝑆𝑇𝐴𝑇𝐼𝑆𝑇𝐼𝐶, 𝑍 =
𝑛2𝑁√𝑁 − 1(𝑟𝑁𝑛 − 2𝑛0𝑛1𝑁 + 𝑛2)

√2𝑛0𝑛1𝑁3(2𝑛0𝑛1𝑁 − 𝑛2)
 

At the minimum value, 𝑍 =
4𝑁√𝑁−1(2𝑁+4)

√2𝑁3(2𝑁−4)
, the value of the CASE#2 test statistic will also be relatively 

high.  
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However, at maximum value tested, where 𝑎 = 5, 𝑏 = 5, 𝑟 = 2,  

𝑍 =
100𝑁√𝑁−1(−30𝑁+100)

√50𝑁3(50𝑁−100)
. Therefore, the value of the CASE#2 test statistic gets very low, even 

negative, as 𝑛0𝑛1 and 𝑛 increase.  
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Runs Test Conclusion: 

Hypothesis two states that according to the runs test, a number is non-random whenever the string 

is too short or too long. This hypothesis was however, true to different extents, depending on the 

CASE. The reason the data and the test results pointed to the hypothesis made is because all of the 

values tested fit the CASE#2 criteria and therefore, had the CASE#2 test statistic. On the other hand, 

when a decimal fits the CASE#1 criteria, which is that the binary representation starts and ends with 

the same label-‘1’ or ‘0’, the test statistic differs greatly from the CASE#2 test statistic. In CASE#2, as 

the string length increases, the test statistic decreases to point where it is no longer between the 

upper and lower critical boundaries. However, in CASE#1, the test statistic will take much longer to 

decrease, or even to become negative. According to the calculations made, the value of the 

CASE#1(string starts and ends in same label-eg. 1001) is  𝑍 =
𝑁2√𝑁−1 ∙[𝑁𝑛(𝑟−1)−2𝑛0𝑛1]

√2𝑛0𝑛1𝑁3(2𝑛0𝑛1𝑁−𝑛2)
 and the value of 

the CASE#2 test statistic is,  

 𝑍 =
𝑛2𝑁√𝑁−1(𝑟𝑁𝑛−2𝑛0𝑛1𝑁+𝑛2)

√2𝑛0𝑛1𝑁3(2𝑛0𝑛1𝑁−𝑛2)
.  

Overall, the hypothesis was proven true for both, however, CASE#2’s test statistic, decreases faster 

than CASE#1’s. 

The issue with having string lengths that are too short can be seen in the test results of the repeating 

decimal of string length 1. This only allows for one label-‘1’ or’0’ to be used and therefore, most 

calculations will equate zero, causing the value of the test statistic to be undefined. Also, as seen in 

the solution, a small value for 𝑛, causes the test statistic to be greater and therefore, the shorter the 

string length, more likely it will be that the test statistic will be greater than or equal to the upper 

critical value.   

Further Investigation: 

It would be better to have a more generalized proof of the effects of changing the string length, rather 

than just showing specific, but relevant examples. Another investigation which would also be 

interesting is the effect on the increase in string length on the increase or decrease in the number of 

runs. 
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Appendix One-Chi-Square Test Calculations  

(ii) 0.12 

Digits 0 1 2 3 4 5 6 7 8 9 

Expected 
Frequency
, 𝐸 100 100 100 100 100 100 100 100 100 100 

Observed 
Frequency
, 𝑂 0 500 500 0 0 0 0 0 0 0 

Deviation 
(O − E) -100 400 400 -100 -100 -100 -100 -100 -100 -100 

Deviation 
Squared        
(O − E)2 

1000
0 

16000
0 

16000
0 

1000
0 

1000
0 

1000
0 

1000
0 

1000
0 

1000
0 

1000
0 

Deviation 
Squared 
divided by 
the 
Expected  
Frequency 
(O−E)2

E
 100 1600 1600 100 100 100 100 100 100 100 

           

𝛼 0.05          

𝐷𝐹 9          

𝜒2 4000          

Critical 
Value 16.9          

Reject H0 
Hypothesi
s Yes          

 

𝑝 0 

Reject H0 Hypothesis yes 

 

(iii) 0.456 

Digits 0 1 2 3 4 5 6 7 8 9 

Expected 
Frequency
, 𝐸 100 100 100 100 100 100 100 100 100 100 

Observed 
Frequency
, 𝑂 0 0 0 0 334 333 333 0 0 0 

Deviation 
(O − E) -100 -100 -100 -100 234 233 233 -100 -100 -100 
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Deviation 
Squared        
(O − E)2 10000 

1000
0 

1000
0 

1000
0 54756 54289 54289 

1000
0 

1000
0 

1000
0 

Deviation 
Squared 
divided by 
the 
Expected  
Frequency 
(O−E)2

E
 100 100 100 100 

547.5
6 

542.8
9 

542.8
9 100 100 100 

           

𝛼 0.05          

𝐷𝐹 9          

𝜒2 
2333.3

4          

Critical 
Value 16.9          

Reject H0 
Hypothesi
s Yes          

 

𝑝 0 

Reject H0 Hypothesis yes 

 

(iv)  0.6789 

Digits 0 1 2 3 4 5 6 7 8 9 

Expected 
Frequency, 
𝐸 100 100 100 100 100 100 100 100 100 100 

Observed 
Frequency, 
𝑂 0 0 0 0 0 0 250 250 250 250 

Deviation 
(O − E) -100 -100 -100 -100 -100 -100 150 150 150 150 

Deviation 
Squared        
(O − E)2 10000 10000 10000 10000 10000 10000 22500 22500 22500 22500 

Deviation 
Squared 
divided by 
the 
Expected  
Frequency 
(O−E)2

E
 100 100 100 100 100 100 225 225 225 225 

           

𝛼 0.05          

𝐷𝐹 9          



  Candidate Number: 000512 -0082  

26 
 

𝜒2 1500          

Critical 
Value 16.9          

Reject H0 
Hypothesis yes          

 

𝑝 0 

Reject H0 Hypothesis yes 

 

(v) 0.87654 

Digits 0 1 2 3 4 5 6 7 8 9 

Expected 
Frequency, 
𝐸 100 100 100 100 100 100 100 100 100 100 

Observed 
Frequency, 
𝑂 0 0 0 0 200 200 200 200 200 0 

Deviation 
(O − E) -100 -100 -100 -100 100 100 100 100 100 -100 

Deviation 
Squared        
(O − E)2 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 

Deviation 
Squared 
divided by 
the 
Expected  
Frequency 
(O−E)2

E
 100 100 100 100 100 100 100 100 100 100 

           

𝛼 0.05          

𝐷𝐹 9          

𝜒2 1000          

Critical 
Value 16.9          

Reject H0 
Hypothesis yes          

 

𝑝 

1.7241E-
209 

Reject H0 Hypothesis yes 

 

(vi) 0.765432 

Digits 0 1 2 3 4 5 6 7 8 9 
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Expected 
Frequency, 𝐸 100 100 100 100 100 100 100 100 100 100 

Observed 
Frequency, 𝑂 0 0 166 166 167 167 167 167 0 0 

Deviation 
(O − E) -100 -100 66 66 67 67 67 67 -100 -100 

Deviation 
Squared        
(O − E)2 10000 10000 4356 4356 4489 4489 4489 4489 10000 10000 

Deviation 
Squared 
divided by the 
Expected  
Frequency 
(O−E)2

E
 100 100 43.56 43.56 44.89 44.89 44.89 44.89 100 100 

           

𝛼 0.05          

𝐷𝐹 9          

𝜒2 666.68          

Critical Value 16.9          

Reject H0 
Hypothesis yes          

 

𝑝 

1.003E-
137 

Reject H0 Hypothesis yes 

 

 (vii) 0.0123456  

Digits 0 1 2 3 4 5 6 7 8 9 

Expected 
Frequency, 𝐸 100 100 100 100 100 100 100 100 100 100 

Observed 
Frequency, 𝑂 143 143 143 143 143 143 142 0 0 0 

Deviation 
(O − E) 43 43 43 43 43 43 42 -100 -100 -100 

Deviation 
Squared        
(O − E)2 1849 1849 1849 1849 1849 1849 1764 10000 10000 10000 

Deviation 
Squared 
divided by the 
Expected  
Frequency 
(O−E)2

E
 18.49 18.49 18.49 18.49 18.49 18.49 17.64 100 100 100 

           

𝛼 0.05          
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𝐷𝐹 9          

𝜒2 428.58          

Critical Value 16.9          

Reject H0 
Hypothesis yes          

 

𝑝 

1.08397E-
86 

Reject H0 Hypothesis yes 

 

(viii) 0.01234567 

Digits 0 1 2 3 4 5 6 7 8 9 

Expected Frequency, 𝐸 100 100 100 100 100 100 100 100 100 100 

Observed Frequency, 
𝑂 125 125 125 125 125 125 125 125 0 0 

Deviation (O − E) 25 25 25 25 25 25 25 25 -100 -100 

Deviation Squared        
(O − E)2 625 625 625 625 625 625 625 625 10000 10000 

Deviation Squared 
divided by the 
Expected  Frequency 
(O−E)2

E
 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 100 100 

           

𝛼 0.05          

𝐷𝐹 9          

𝜒2 250          

Critical Value 16.9          

Reject H0 Hypothesis yes          

 

𝑝 

9.97615E-
49 

Reject H0 Hypothesis Yes 

 

(ix) 0.012345678 

Digits 0 1 2 3 4 5 6 7 8 9 

Expected Frequency, 
𝐸 100 100 100 100 100 100 100 100 100 100 

Observed Frequency, 
𝑂 112 111 111 111 111 111 111 111 111 0 

Deviation (O − E) 12 11 11 11 11 11 11 11 11 -100 

Deviation Squared        
(O − E)2 144 121 121 121 121 121 121 121 121 10000 

Deviation Squared 
divided by the 1.44 1.21 1.21 1.21 1.21 1.21 1.21 1.21 1.21 100 
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Expected  Frequency 
(O−E)2

E
 

           

𝛼 0.05          

𝐷𝐹 9          

𝜒2 111.12          

Critical Value 16.9          

Reject H0 Hypothesis yes          

 

𝑝 

8.69644E-
20 

Reject H0 Hypothesis yes 

 

(x) 0.0123456789 

Digits 0 1 2 3 4 5 6 7 8 9 

Expected Frequency, 𝐸 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 

Observed Frequency, 𝑂 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 
10

0 

Deviation (O − E) 0 0 0 0 0 0 0 0 0 0 

Deviation Squared        (O − E)2 0 0 0 0 0 0 0 0 0 0 

Deviation Squared divided by the Expected  

Frequency 
(O−E)2

E
 0 0 0 0 0 0 0 0 0 0 

           

𝛼 

0.0
5          

𝐷𝐹 9          

𝜒2 0          

Critical Value 
16.

9          

Reject H0 Hypothesis No          

 

𝑝 1 

Reject H0 Hypothesis No 

 

Control: π 

Digits 0 1 2 3 4 5 6 7 8 9 

Observed Value 93 116 103 103 93 97 94 95 100 106 

Expected Value 100 100 100 100 100 100 100 100 100 100 

𝑝 0.853049013 

Reject H0 Hypothesis No 
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Appendix Two-Runs Test Calculations 

(i) 0.3 

Mean 3 

𝑅 (Number of observed runs) 1 

𝑁0 (Number of 0s) 1000 

𝑁1 (Number of 1s) 0 

𝑁 (Number of digits) 1000 

𝐸(𝑅) 1.000 

𝑉𝑎𝑟(𝑅) 0.000 

𝑆𝑡. 𝐷𝑒𝑣(𝑅) 0.000 

𝑍 Undefined 

 

(iii) 0.456 

Mean 4.999 

𝑅 (Number of observed runs) 667 

𝑁0 (Number of 0s) 334 

𝑁1 (Number of 1s) 666 

𝑁 (Number of digits) 1000 

𝐸(𝑅) 445.888 

𝑉𝑎𝑟(𝑅) 197.678 

𝑆𝑡. 𝐷𝑒𝑣(𝑅) 14.060 

𝑍 15.727 

 

Null hypothesis is rejected. 

(iv) 0.6789 

Mean 7.5 

𝑅 (Number of observed runs) 500 

𝑁0 (Number of 0s) 500 

𝑁1 (Number of 1s) 500 

𝑁 (Number of digits) 1000 

𝐸(𝑅) 501.000 

𝑉𝑎𝑟(𝑅) 249.750 

𝑆𝑡. 𝐷𝑒𝑣(𝑅) 15.803 

𝑍 -0.063 

Null hypothesis is accepted. 

 

 

(v) 0.87654 

Mean 6 
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𝑅 (Number of observed runs) 500 

𝑁0 (Number of 0s) 600 

𝑁1 (Number of 1s) 400 

𝑁 (Number of digits) 1000 

𝐸(𝑅) 481.000 

𝑉𝑎𝑟(𝑅) 230.150 

𝑆𝑡. 𝐷𝑒𝑣(𝑅) 15.171 

𝑍 1.252 

Null hypothesis is accepted. 

 

(vi) 0.765432 

Mean 4.504 

𝑅 (Number of observed runs) 334 

𝑁0 (Number of 0s) 499 

𝑁1 (Number of 1s) 501 

𝑁 (Number of digits) 1000 

𝐸(𝑅) 500.998 

𝑉𝑎𝑟(𝑅) 249.748 

𝑆𝑡. 𝐷𝑒𝑣(𝑅) 15.803 

𝑍 -10.567 

Null hypothesis is rejected. 

(vii) 0.0123456 

Mean 2.997 

𝑅 (Number of observed runs) 286 

𝑁0 (Number of 0s) 429 

𝑁1 (Number of 1s) 571 

𝑁 (Number of digits) 1000 

𝐸(𝑅) 490.918 

𝑉𝑎𝑟(𝑅) 239.769 

𝑆𝑡. 𝐷𝑒𝑣(𝑅) 15.484 

𝑍 -13.234 

Null hypothesis is rejected. 

(viii) 0.01234567 

Mean 3.5 

𝑅 (Number of observed runs) 250 

𝑁0 (Number of 0s) 500 

𝑁1 (Number of 1s) 500 

𝑁 (Number of digits) 1000 

𝐸(𝑅) 501.000 

𝑉𝑎𝑟(𝑅) 249.750 

𝑆𝑡. 𝐷𝑒𝑣(𝑅) 15.803 
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𝑍 -15.883 

Null hypothesis is rejected. 

(ix) 0.012345678 

Mean 3.108 

𝑅 (Number of observed runs) 224 

𝑁0 (Number of 0s) 445 

𝑁1 (Number of 1s) 555 

𝑁 (Number of digits) 1000 

𝐸(𝑅) 494.950 

𝑉𝑎𝑟(𝑅) 243.736 

𝑆𝑡. 𝐷𝑒𝑣(𝑅) 15.612 

𝑍 -17.355 

Null hypothesis is rejected. 

(x) 0.0123456789 

Mean 4.5 

𝑅 (Number of observed runs) 200 

𝑁0 (Number of 0s) 500 

𝑁1 (Number of 1s) 500 

𝑁 (Number of digits) 1000 

𝐸(𝑅) 501.000 

𝑉𝑎𝑟(𝑅) 249.750 

𝑆𝑡. 𝐷𝑒𝑣(𝑅) 15.803 

𝑍 -19.046 

Null hypothesis is rejected. 

Control: π 

Mean 4.471 

𝑅 (Number of 
observed runs) 520 

𝑁0 (Number of 0s) 508 

𝑁1 (Number of 1s) 492 

𝑁 (Number of digits) 1000 

𝐸(𝑅) 500.872 

𝑉𝑎𝑟(𝑅) 249.622 

𝑆𝑡. 𝐷𝑒𝑣(𝑅) 15.799 

𝑍 1.211 

 0.887 

 1.96 

Null hypothesis is accepted. 
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